Abstract

Tungsten oxide (WOx) nanostructures were prepared by a hot filament chemical vapour deposition system and the temperature of the hot tungsten filaments was changed by steps of degrees. The morphology and average growth rate were indicated by scanning electron microscopy which showed that the morphology was highly related to the filament temperature (Tf) and the distance between the filaments and the polished Si (1 0 0) substrates (df). The influence of Tf on the crystalline nature was studied by x-ray diffraction and Raman spectroscopy. The evolution of stoichiometry and types of defects was indicated by x-ray photoelectron spectroscopy and slow positron implantation spectroscopy. When Tf was up to 1750 °C, tungsten oxide nanostructure was synthesized. A turning point of Tf was found at which the nature of crystallinity and of stoichiometry was the best. As Tf increased to 2100 °C or df decreased, the film crystallinity decreased; correspondingly, the component ratio of stoichiometry WO3 decreased and lots of vacancy agglomerates were present. In order to develop the chemical phase from substoichiometry to stoichiometry, the oxygen gas concentration in the mixture gas during deposition should be raised to an appropriate level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call