Abstract

We analyzed long-term changes in macroinvertebrate communities in a Mediterranean temporary stream in southern Portugal over 15 y (1993–2008) at 10 locations with 3 degrees of physicochemical disturbance (reference, high disturbance, and mild disturbance). We related year-to-year variation of macroinvertebrate communities to long-term (59 y) information on precipitation and temperature. Our goals were to: 1) determine the stability of macroinvertebrate communities in the stream, 2) establish the influence of physicochemical disturbance on community stability, 3) assess the influence of climate change on the macroinvertebrate communities, and 4) assess the interactive effects of climate change and disturbance level on macroinvertebrate communities. Community structure varied naturally from year to year, but changes in taxon richness and evenness were much stronger and more unpredictable in disturbed than in other sites. In the long term, the more diverse (reference) and the poorest (disturbed) communities were stable, whereas communities affected by mild disturbance slowly decreased in taxon richness (slope = −0.07, r2 = 0.38). This decrease could be a response to the continuous stress or to climate change. The multivariate patterns over time of invertebrate communities at mildly disturbed sites were the only patterns significantly correlated with climatic patterns. In the past 59 y in this Mediterranean area (southeastern Europe), winter temperature has increased 1°C and precipitation has decreased 1.5 mm/d. Marked changes in community composition (70–80% Bray–Curtis dissimilarity) occurred only in years of extremely low precipitation or temperature. In years of climatic extremes and at chemically disturbed sites, Orthocladiinae and Simuliidae became dominant. In this stream, a shift in community equity occurs before species elimination. This shift might be useful as an early warning for biodiversity loss because of disturbance or climate change. We recommend continued sampling of reference sites for monitoring purposes so that effects of climate change can be established and so that contemporary human disturbance can be assessed relative to an adjusted reference condition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call