Abstract

In this paper, the effects of both an external electric field and an external magnetic field on the energy of two interacting electrons in a two-dimensional parabolic quantum dot are investigated for various quantum states (n,|m|) in the framework of the asymptotic iteration method. It is seen that the energy eigenvalues increase monotonically with increasing electric and magnetic field strengths in the weak- and strong-field regimes. However, the behavior is slightly different in the two regimes. Whereas the energy values increase linearly in the low-electric-field regime, they increase much more than linearly in the strong-field regime. This paper demonstrates that it is possible to obtain the energy eigenvalues of two electrons in a two-dimensional parabolic quantum dot not only for cases with and without an electric field and with and without a magnetic field, but also for cases where magnetic and electric fields (either strong or weak) are present simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.