Abstract

In this work, combined effects of external electric and magnetic fields, and hydrostatic pressure on the refractive index changes and optical absorption coefficients of a hydrogenic impurity confined in a two-dimensional parabolic quantum dot are studied. Energy eigenvalues and eigenvectors are calculated using the direct matrix diagonalization method and optical properties are obtained using the compact density matrix approach. It is found that the confinement potential strength, hydrogenic impurity, hydrostatic pressure, external electric and magnetic fields and the tilt angle θ considerably change the transition energy between the subbands and dipole moment matrix elements. Therefore, these parameters have a great influence on the linear and the third-order nonlinear optical absorption coefficients as well as the refractive index changes of the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call