Abstract
Full Paper: The starting point is our previous study of influence of the internal molecular mean field of dipoledipole interactions on local orientation and phase transitions in polymer liquid crystal (PLC) systems of longitudinal chains. [1, 2] Electric dipoles are created by LC mesogen moieties. The longitudinal PLC is a macromolecule of consecutively copolymerized LC and flexible polymer sequences. We now amplify the model by inclusion of dipole-external electric field interactions. We find that the external fields can seriously modify the local orientational order of the system and affect phase transition parameters dependent on that order. In particular, the external fields induce the formation of disoriented nematic phases with negative values of the second order orientation parameter pP2P for LC sequences in the longitudinal PLCs while the first order parameter pP1P is positive. However, some rapid decreases in pP1P are observed at points of positiveto-negative transitions of pP2P; thus the LC disorientation manifests itself. The limiting case of the monomer liquid crystal (MLC) systems is included also.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have