Abstract
An overview is given of the direct and long‐term effects of exercise on the biochemical characteristics of cartilage and subchondral bone, and on the metabolic activity of chondrocytes in the juvenile horse. In the experimental setup 43 foals were reared until weaning at 5 months of age under similar conditions, except for the type and amount of exercise. Fifteen foals remained at pasture (Pasture group and also control group), 14 foals were kept in box stalls (Box group), and 14 foals were kept in the same box stalls but were subjected daily to an increasing number of gallop sprints (Training group). After weaning 8 foals from each group were euthanised. All remaining 19 animals were housed together in a loose box with access to a small paddock to study a possible reversibility of exercise‐induced effects. Post mortem subchondral bone and cartilage samples were collected and analysed for bone morphogenic enzymes, matrix composition, chondrocyte metabolic activity, and bone mineral density. It resulted that lack of exercise leads to a retardation of the normal development of the joint. This is largely compensated for when afterwards a more normal exercise regimen is followed. Most parameters in the Training group approximated those of the pastured foals at age 5 months. However, at age 11 months there were indications for a reduced performance of the investigated tissues in this group. It is concluded that regular, sub‐maximal loading, as occurred in the Pasture group, seems best for an optimal development of the musculoskeletal tissues. The combination of short bouts of heavy exercise superimposed on a basic box rest regimen appears to have adverse effects on long‐term viability of the tissues and may hence lead to an impaired resistance to injury.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have