Abstract

Body size has been shown to decrease with increasing temperature in many species, prompting the suggestion that it is a universal ecological response. However, species with complex life cycles, such as holometabolous insects, may have correspondingly complicated temperature–size responses. Recent research suggests that life history and ecological traits may be important for determining the direction and strength of temperature–size responses. Yet, these factors are rarely included in analyses. Here, we aim to determine whether the size of the bivoltine butterfly, Polyommatus bellargus, and the univoltine butterflies, Plebejus argus and Polyommatus coridon, change in response to temperature and whether these responses differ between the sexes, and for P. bellargus, between generations. Forewing length was measured using digital specimens from the Natural History Museum, London (NHM), from one locality in the UK per species. The data were initially compared to annual and seasonal temperature values, without consideration of life history factors. Sex and generation of the individuals and mean monthly temperatures, which cover the growing period for each species, were then included in analyses. When compared to annual or seasonal temperatures only, size was not related to temperature for P. bellargus and P. argus, but there was a negative relationship between size and temperature for P. coridon. When sex, generation, and monthly temperatures were included, male adult size decreased as temperature increased in the early larval stages, and increased as temperature increased during the late larval stages. Results were similar but less consistent for females, while second generation P. bellargus showed no temperature–size response. In P. coridon, size decreased as temperature increased during the pupal stage. These results highlight the importance of including life history factors, sex, and monthly temperature data when studying temperature–size responses for species with complex life cycles.

Highlights

  • Body size is considered to be one of the most important traits of an organism due to its strong links to ecology and life history (Baar, Friedman, Meiri, & Scharf, 2018; Bowden et al, 2015; Fenberg & Roy, 2008; Horne, Hirst, & Atkinson, 2015; McCauley, Hammond, Frances, & Mabry, 2015)

  • Temperature–size responses can vary according to life cycle factors and sex

  • If these factors are not included in analyses, adult size of a species may not appear responsive, especially when compared to annual or seasonal temperatures

Read more

Summary

Introduction

Body size is considered to be one of the most important traits of an organism due to its strong links to ecology and life history (Baar, Friedman, Meiri, & Scharf, 2018; Bowden et al, 2015; Fenberg & Roy, 2008; Horne, Hirst, & Atkinson, 2015; McCauley, Hammond, Frances, & Mabry, 2015) Ecological rules such as the temperature–size rule (TSR) and Bergmann's rule (latitude‐size clines) have led to the prediction that body size declines will be a “universal” response to climate change (Daufresne, Lengfellner, & Sommer, 2009; Gardner, Peters, Kearney, Joseph, & Heinsohn, 2011). Univoltine species increase in size with temperature while multivoltine species decrease in size, whereas bivoltine species appear to show no change (Horne et al, 2015) While these are important findings, approaches far have not generally considered whether individual generations and/or sexes have varying responses. Omission of such ecological and life history factors when conducting analyses may oversimplify the study system and/or cause some temperature–size responses to be masked

Objectives
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call