Abstract
BackgroundExtensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. The aim of this study was to compare 75 to 100 % distal screw lengths in VLPO.MethodsA biomechanical study was conducted on 11 paired fresh-frozen radii. HRpQCT scans were performed to assess bone mineral density (BMD) and bone mineral content (BMC). The specimens were randomized pair-wise into two groups: 100 % (group A) and 75 % (group B) unicortical distal screw lengths. A validated fracture model for extra-articular distal radius fractures (AO-23 A3) was used. Polyaxial volar locking plates were mounted, and distal screws was inserted using a drill guide block. For group A, the distal screw tips were intended to be flush or just short of the dorsal cortex. In group B, a target screw length of 75 % was calculated. The specimens were tested to failure using a displacement-controlled axial compression test. Primary biomechanical stability was assessed by stiffness, elastic limit, and maximum force as well as with residual tilt, which quantified plastic deformation.ResultsNine specimens were tested successfully. BMD and BMC did not differ between the two groups. The mean distal screw length of group A was 21.7 ± 2.6 mm (range: 16 to 26 mm), for group B 16.9 ± 1.9 mm (range: 12 to 20 mm). Distal screws in group B were on average 5.6 ± 0.9 mm (range: 3 to 7 mm) shorter than measured. No significant differences were found for stiffness (706 ± 103 N/mm vs. 660 ± 124 N/mm), elastic limit (177 ± 25 N vs. 167 ± 36 N), maximum force (493 ± 139 N vs. 471 ± 149 N), or residual tilt (7.3° ± 0.7° vs. 7.1° ± 1.3°).ConclusionThe 75 % distal screw length in VLPO provides similar primary stability to 100 % unicortical screw length. This study, for the first time, provides the biomechanical basis to choose distal screws significantly shorter then measured.Electronic supplementary materialThe online version of this article (doi:10.1186/s13018-015-0283-8) contains supplementary material, which is available to authorized users.
Highlights
Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures
The study’s null hypothesis was that unicortical 100 % distal screw lengths provide superior primary stability compared to 75 % distal screw lengths in VLPO. This biomechanical study was conducted on fresh-frozen human radii using a validated fracture model for extraarticular distal radius fractures (AO-23 dorsally displaced extra-articular distal radius fractures (A3))
bone mineral density (BMD) and bone mineral content (BMC) did not differ between the two groups
Summary
Extensor tendon irritation is one of the most common complications following volar locking plate osteosynthesis (VLPO) for distal radius fractures. It is most likely caused by distal screws protruding the dorsal cortex. Shorter distal screws could avoid this, yet the influence of distal screw length on the primary stability in VLPO is unknown. Recent studies have reported complication rates following volar locking plate osteosynthesis (VLPO) for distal radius fractures of up to 18 % [1, 2]. Two of the most common complications are extensor tendon irritation and attritional tendon ruptures [1, 3, 2] These are attributable either to Dorsal screw protrusion might be an avoidable complication, especially for extra-articular fractures (AO-23 A3), which are the most common ones [7, 8].
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have