Abstract

We analyze theoretically the effects of excluded-volume interactions between motors on the dynamics of a cargo driven by multiple motors. The model considered shares much in common with others recently proposed in the literature, with the addition of direct interaction between motors and motor back steps. The cargo is assumed to follow a continuum Langevin dynamics, while individual motors evolve following a Monte Carlo algorithm based on experimentally accessible probabilities for discrete forward and backward jumps, and attachment and detachment rates. The links between cargo and motors are considered as nonlinear springs. By means of numerical simulations we compute the relevant quantities characterizing the dynamical properties of the system, and we compare the results to those for noninteracting motors. We find that interactions lead to quite relevant changes in the force-velocity relation for cargo, with a considerable reduction of the stall force, and also cause a notable decrease of the run length. These effects are mainly due to traffic-like phenomena in the microtubule. The consideration of several parallel tracks for motors reduces such effects. However, we find that for realistic values of the number of motors and the number of tracks, the influence of interactions on the global parameters of transport of cargo are far from being negligible. Our studies also provide an analysis of the relevance of motor back steps on the modeling, and of the influence of different assumptions for the detachment rates. In particular, we discuss these two aspects in connection with the possibility of observing processive back motion of cargo at large load forces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.