Abstract

This study characterizes surface treated classic type fiber metal laminates (FMLs) interlaminar shear strength (ILSS) based on a glass mat reinforced polyphenylene sulphide composite and an aluminum alloy. The effect of concentration of γ‐glycidoxypropyltrimethoxysilane surface treatment on ILSS of adhesive bonding between aluminum sheet and composite laminates has been investigated. After determining the silane concentration, novel FML material is manufactured using a compression moulding process which involves aluminum sheets with different circular hole perforations (Array type A and B) with two circular hole diameters (ϕ3 and ϕ5 mm) and two total hole area/closed area: 0.05 and 0.06) to develop mechanical interlocking between aluminum layers and composite laminates. Tensile tests are performed to investigate the effect of different circular hole perforations on ILSS properties of FMLs. Test results show that ILSS is improved with increasing the circular hole diameter and decreased with the number of holes as correlated with undrilled FMLs. Failure modes, damage initiation, and progression of FMLs with different open hole perforations are determined with optical microscope. POLYM. COMPOS., 37:963–973, 2016. © 2014 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.