Abstract
A study on new materials usage to produce fiber metal laminates is presented in this work. Amorphous polyvinyl chloride thermoplastic and aluminum 3550 sheets are used to fabricate the fiber metal laminates. Different surface treatments were carried out on the aluminum sheets and the fiber metal laminates were produced using the film stacking procedure. Flexural strength and modulus of the products and also shear strength of bonding were measured using three-point bending test, and their failure mechanisms were evaluated using optical microscope images. Also, the effects of aluminum layer and aluminum/composite laminates bonding on the dynamic properties of the fiber metal laminates were studied using Dynamic Mechanical Thermal Analysis. It was concluded that mechanical roughening of the aluminum sheet has the maximum effect on the aluminum/matrix bonding strength such that simultaneous fracture of composite laminates and aluminum layer in the bending condition was observed in the produced fiber metal laminates without any delamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.