Abstract

Terbium-doped YVO4 has been considered a nonluminescent solid since the first classic studies on rare-earth-doped phosphors in the 1960s. However, we demonstrate that defect engineering of YVO4:Tb3+ nanoparticles overcomes the metal-metal charge transfer (MMCT) process which is responsible for the quenching of the Tb3+ luminescence. Tetragonal (Y1-xTbx)VO4 nanoparticles obtained by colloidal precipitation showed expanded unit cells, high defect densities, and intimately mixed carbonates and hydroxides, which contribute to a shift of the MMCT states to higher energies. Consequently, we demonstrate unambiguously for the first time that Tb3+ luminescence can be excited by VO43- → Tb3+ energy transfer and by direct population of the 5D4 state in YVO4. We also discuss how thermal treatment removes these effects and shifts the quenching MMCT state to lower energies, thus highlighting the major consequences of defect density and microstructure in nanosized phosphors. Therefore, our findings ultimately show nanostructured YVO4:Tb3+ can be reclassified as a UV-excitable luminescent material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call