Abstract
Management of severe traumatic brain injury (sTBI) typically involves the use of sedation, which inherently results in benefits and risks. The cytochrome P450 enzyme CYP2B6 is involved in the biotransformation of particular drug classes, including many intravenous sedatives. Variants of the CYP2B6 gene can lead to decreased systemic clearance of some sedatives, including propofol. This study aimed to investigate the relationship of CYP2B6 gene variation and patient outcomes after TBI while also considering propofol administration. Patients who sustained a non-penetrating sTBI and admitted to a single-center Level 1 trauma hospital were included in this study (n = 440). The *6 functional allele of CYP2B6 that leads to reduced enzyme expression and activity required genotyping two single nucleotide polymorphisms, rs3745274 and rs2279343. Patient outcomes were evaluated using the Glasgow Outcome Scale (GOS) and Disability Rating Scale (DRS) at 3 and 6 months post-injury. Data on sedative administration were abstracted from medical records. Individuals homozygous for the alleles coding for the reduced enzyme expression and activity were more likely to have worse outcomes. A relationship between propofol administration and 3-month GOS and 6-month DRS was noted when controlling for CYP2B6 genotype. These findings suggest that genetic variation in CYP2B6 may influence the impact of intravenous sedation on patient outcomes after TBI and warrants further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.