Abstract
Effective cough requires a significant increase in lung volume used to produce the shear forces on the airway to clear aspirated material. This increase in tidal volume during cough, along with an increase in tidal frequency during bouts of paroxysmal cough produces profound hyperventilation and thus reduces arterial CO2. While there are several reports in the literature regarding the effects of hypercapnia, hyperoxia, and hypoxia on cough, there is little research quantifying the effects of hypocapnia on the cough reflex. We hypothesized that decreased CO2 would enhance coughing. In 12 spontaneously breathing adult male cats, we compared bouts of prolonged mechanically stimulated cough, in which cough induced hyperventilation (CHV) was allowed to occur, with isocapnic cough trials where we maintained eupneic end-tidal CO2 by adding CO2 to the inspired gas. Isocapnia slightly increased cough number and decreased esophageal pressures with no change in EMG magnitudes or phase durations. The cough-to-eupnea transition was also analyzed between CHV, isocapnia, and a third group of animals that were mechanically hyperventilated to apnea. The transition to eupnea was highly sensitive to added CO2, and CHV apneas were much shorter than those produced by mechanical hyperventilation. We suggest that the cough pattern generator is relatively insensitive to CHV. In the immediate post-cough period, the appearance of breathing while CO2 is very low suggests a transient reduction in apneic threshold following a paroxysmal cough bout.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.