Abstract

We monitored the steady-state ventilatory responses of anesthetized cats to increases in lung volume produced by expiratory threshold loads (ETL) to study the roles of peripheral and central neural mechanisms in controlling respiration at elevated lung volumes. Application of an ETL of 5 cmH2O produced a significant decrease in respiratory frequency (-18%) but no change in minute ventilation (VE) due to a significant increase in tidal volume (VT) (19.3%). The drop in frequency was due solely to an increase in expiratory duration. ETL of 10 cmH2O significantly reduced VE (-17.5%) for the same reason. VT was maintained or increased at elevated lung volumes due to both an increase in the rate of rise of phrenic activity and a maintenance of inspiratory duration (TI) despite increases in both chemical drive and pulmonary stretch receptor (PSR) activity. No PSR adapted completely to the maintained change in lung volume. The sensitivity of the inspiratory off-switch mechanism to increases in lung volume, given by the reciprocal of the VT-TI relationship, decreased significantly during breathing on ETL. The results are consistent with the hypothesis that central habituation, not just peripheral adaptation of PSR, determines breathing pattern at elevated lung volumes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call