Abstract

A femtosecond pump-probe technique was employed to study the dissociation dynamics of sulfur dioxide and sulfur dioxide clusters in real time. Dissociation is initiated by a multiphoton scheme that populates the E state. The SO(2) (+) transient is fit to a biexponential decay comprising a fast and a slow component of 230 fs and 8 ps, respectively. The SO(+) transient consists of a growth component of 225 fs as well as a subsequent decay of 373 fs. The pump-probe response obtained from the monomer clearly shows the predissociative cleavage of a S-O bond. Upon cluster formation, a sequential increase in the fast decay component is observed for increasing cluster size, extending to 435 fs for (SO(2))(4) (+). The transient response of cluster dissociation products SO(SO(2))(n) (+), where n=1-3, reflects no growth component indicating that formation proceeds through the ion state. Therefore, cluster formation results in a caging effect, which impedes the dissociation process. Further direct evidence for our proposed mechanism is obtained by a technique that employs a comparison of the amplitude coefficients of each respective component of the fit. This method makes possible the determination of branching ratios of competing relaxation processes and thereby the influence of cluster formation on each can be resolved. The caging effect is attributed to a steric hindrance placed on the SO(2) chromophore, preventing it from attaining a linear geometry necessary for dissociation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.