Abstract

It has been shown that the atypical antipsychotic drug clozapine increases the levels of the neurosteroid allopregnanolone in the rat brain. The 18 kDa translocator protein (TSPO), formerly known as the peripheral-type benzodiazepine receptor, has been demonstrated to be involved in the process of steroid biosynthesis, in peripheral steroidogenic tissues as well as in glia cells in the brain. In the current study, we investigated the influence of chronic treatment with clozapine and other antipsychotics (thioridazine,sulpiride and risperidone) on TSPO binding in cell cultures and rat tissues. Clozapine significantly increased TSPO binding density in C6 rat glioma cells and in MA-10 mouse Leydig tumor cells, while the antipsychotic sulpiride had no effect on TSPO binding density in both cell lines. In addition, clozapine, but not sulpiride, significantly increased progesterone synthesis by MA-10 Leydig tumor cells. In an animal experiment, male Sprague–Dawley rats were treated with clozapine (20 mg/kg), risperidone (0.5 mg/kg), thioridazine (20 mg/kg), or sulpiride (20 mg/kg) for 21 days, followed by 7 days of withdrawal. Clozapine induced significant increases in TSPO binding in brain and peripheral steroidogenic tissues, whereas the other antipsychotics did not show such pronounced effects on TSPO binding. Our results suggest that TSPO may be involved in the modulation of steroidogenesis by clozapine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.