Abstract

Acute stimulation of cholesterol transport into mitochondria involves the cAMP-dependent protein kinase (PKA), peripheral-type benzodiazepine receptor (PBR), and the steroidogenesis acute regulatory (StAR) proteins. We investigated the respective role of these proteins in hormone-induced steroidogenesis. Oligonucleotides antisense, but not sense, to PBR and StAR reduced their respective levels in steroidogenic cells and inhibited hormone-stimulated steroid formation in MA-10 mouse Leydig tumor cells. In search of the proteins regulating PBR we identified a protein, PAP7, which interacts with PBR and the PKA regulatory subunit RIα, is present in adrenal and gonadal cells and is found in mitochondria. Overexpression of the full length PAP7 increased the hormone-induced steroid production. However, inhibition of PAP7 expression reduced the gonadotropin-induced steroid formation. In search of a PBR functional antagonist that would facilitate the studies on the biological function of PBR, we screened a phage display library. A 7-mer competitive PBR peptide antagonist was identified, which when transduced into Leydig cells inhibited the benzodiazepine and hormone-stimulated steroid production suggesting that the endogenous PBR agonist/receptor interaction is critical for the hormone-dependent steroidogenesis. These data indicate that hormone-induced cholesterol transport and the subsequent steroid formation is a dynamic multistep process involving protein–protein interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.