Abstract
The influence of cholesterol (CHOL) on the main phase transition in single shell dipalmytoylphosphatidylcholine (DPPC) vesicles was investigated in equilibrium and kinetic experiments. CHOL increases the optical density and causes a slight hysteresis in turbidity transition curves. Static fluorescence anisotropy measurements showed interesting differences for three probes sensing different parts in the hydrophobic region of the phospholipid bilayer. Differential scanning calorimetry (DSC) peaks can be separated into a narrow and a broad component. The narrow component, which decreases linearly with increasing CHOL content and disappears at 20 mol %, is attributed to the transition of free phospholipid, while the broad component, being associated with the transition of CHOL-lipid units, increases monotoniously from 0 to 20%. Kinetic experiments were performed on our iodine-laser T-jump arrangement with turbidity detection. Three cooperative relaxation signals in the microsecond and millisecond time range were detected for pure DPPC vesicles as well as vesicles containing 7.5 and 16.5 mol % CHOL. All three relaxation processes were changed by CHOL: the superposition of the three relaxation amplitudes can be separated into a narrow and a broad component, as in DSC experiments. A speculative model is presented which assumes an inhomogeneous CHOL distribution fluctuating on a millisecond time scale in the temperature region of the main phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.