Abstract

Using hot torsional tests, the influence of the most common elements in low alloy steels (C, Mn, Si, Mo) and in microalloyed steels (Ti, V, Nb) on peak strain has been studied. At the temperatures (900, 1000 and 1100°C) and strain rates (0.544, 1.451, 3.628 and 5.224 s−1) at which the tests were carried out all the elements remained in solution during deformation with the exception of titanium which was in part previously precipitated. In these conditions, the results indicate that C, Si and Mn have hardly any influence on the value of peak strain (ϵp) while Mo, V, Ti and particularly Nb considerably increase its value. The study has been completed with the modelling of ϵp as a function of the Zener-Hollomon parameter and the austenite grain size for all the steels studied, showing the quantitative influence of the different alloying elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.