Abstract

One of the significant challenges in a nanoparticles-based anticancer drug delivery system for cancer therapy application is to design nanoparticles with specific functionality for efficient drug conjugation and release. In the present study, different carboxylate molecules, i.e., succinic acid (SA), ascorbic acid (AA), and citric acid (CA), were used as surface modifiers for delivery of an anticancer drug, doxorubicin (DOX), using Fe3O4 magnetic nanoparticles (MNPs). Here, a simple one-pot co-precipitation method was successfully used to fabricate monodisperse and uniform carboxylates functionalized Fe3O4 nanoparticles with excellent superparamagnetic properties and colloidal stabilities. Based on the result, the as-prepared MNPs exhibited high drug loading due to the formation of intermolecular forces between DOX and carboxylates moieties or MNPs surface. Besides, the release of the loaded DOX could quickly be released by simply reducing the pH of the suspension. However, it was observed that both loading efficiency and release of DOX were significantly affected by the type of carboxylate moieties. Finally, in vitro MTT assay of HeLa cell lines also revealed that the as-prepared DOX-loaded nanoparticles were able to induce the death of the cancer cell efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.