Abstract

Cyclohexanol is an important feedstock in the chemical industry. Highly selective hydrogenation of phenols to cyclohexanol over non-noble metal catalysts remains a challenge. Herein, four distinctive carbon materials, carbon black (CB), activated carbon (AC), activated carbon fiber (ACF) and carbon nanotube (CNT) were selected as catalyst supports to load Ni nanoparticles for effective phenol hydrogenation. The results show that the phenol conversion and cyclohexanol selectivity in aqueous phase hydrogenation reaction at 180 °C for 2 h over 10 wt% Ni/AC catalyst could reach 99.7% and 94.8%, respectively. These values are better than those obtained over 10 wt% Ni/ACF, Ni/CNT and Ni/Al2O3. After surface modification of carbon supports, the catalytic activity and reuse effect of modified catalysts are significantly enhanced and the optimal temperature decreases to 150 °C. This is because that modified carbon supports have abundant surface functional groups so as to provide a high dispersion and stable anchor of ultrafine active Ni nanoparticles (∼12 nm). Phenol hydrogenation catalyzed by different Ni/carbon catalysts conforms to a first-order reaction, and their apparent activation energies are in a range of 49∼68 kJ mol−1 (49 corresponds to the modified catalyst Ni/MAC), which are markedly lower than that of Ni/Al2O3 (∼96 kJ mol−1). The potential mechanism of highly selective hydrogenation of phenol to cyclohexanol in this work is mainly controlled by the reaction kinetics, which is closely related to the different desorption abilities of cyclohexanone and cyclohexanol from the catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.