Abstract

The combination of microbial reductive dechlorination and aerobic oxidation (RD-AO) process was proposed to be a promising strategy for extensive bioremediation of highly chlorinated polychlorinated biphenyls (PCBs). Nonetheless, experimental evidence on the impact of the RD on subsequent AO in anaerobic-aerobic two-stage treatment remains scarce. The present study applied stable-isotope probing (SIP) to explore the RD-AO mediated degradation of PCBs in an e-waste-contaminated soil. The RD-AO treatment resulted in 37.1 % and 48.2 % degradation of PCB180 and PCB9, respectively, while the PCB9 degradation efficiency decreased compared to the sole AO (81.2 %). The inhibition of PCB aerobic degradation might be caused by the alteration of aerobic bacterial community, which was proved by a higher abundance of anaerobic bacteria and a lower abundance of aerobic bacteria being observed in the aerobic stage of RD-AO. Further evidence was obtained using DNA-SIP that the anaerobic stage altered the PCB degraders' community structures and changed three of the five degraders. There were four lineages (Arenimonas, Steroidobacter, Sulfurifustis, and Thermoanaerobacterales) identified as PCB degraders for the first time. Interestingly, three of them were found in RD-AO microcosm, suggesting that anaerobic-aerobic two-stage treatment can recruit novel bacteria involved in PCBs aerobic degradation. The present study provided novel insight into the synergistic integration of anaerobic and aerobic processes for extensive degradation of highly chlorinated PCBs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call