Abstract
This paper proposes the importance of age and gender information in the diagnosis of diabetic retinopathy. We utilized Deep Residual Neural Networks (ResNet) and Densely Connected Convolutional Networks (DenseNet), which are proven effective on image classification problems and the diagnosis of diabetic retinopathy using the retinal fundus images. We used the ensemble of several classical networks and decentralized the training so that the network was simple and avoided overfitting. To observe whether the age and gender information could help enhance the performance, we added the information before the dense layer and compared the results with the results that did not add age and gender information. We found that the test accuracy of the network with age and gender information was 2.67% higher than that of the network without age and gender information. Meanwhile, compared with gender information, age information had a better help for the results.Clinical Relevance- The additional information in the dataset (such as age, gender, time of illness, etc.) can improve the accuracy of automatic diagnosis. Therefore, we strongly recommend that researchers add these different kinds of additional information when creating the dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.