Abstract

Abstract Experiments by Weickert showed that the critical impact velocity of a shaped charge jet, required to cause detonation of a steel/explosive/steel laminate, reduced when the explosive thickness reduced. This paper examines the cause of this change using hydrocode simulations with and without a temperature based burn model. The simulations show that the change in critical impact velocity is caused by the reflected shock from the rear plate exceeding the shock at the cover plate. At this point the site of the detonation moves from the cover plate to the rear plate. Further reduction in explosive thickness causes further reduction in critical impact velocity due to the reduced dissipation of the shock reaching the back plate. The change in critical velocity for hemispherical-nosed projectiles is predicted to be not as sharply defined as for flat-nosed projectiles. This is due to a later, third stage reflection from the bulge of the advancing cover plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.