Abstract
The interaction of projectile and target in a penetration process is key for precise prediction and safety design. However, this interaction is instantaneous and varying with complex physical phenomena, that induces a challenge of panoramically illustrating the penetration process. This work develops a new numerical model that can capture the penetration process of a deformable projectile impacting ductile target plate and meanwhile the interaction of projectile and target is considered. Here, physical mechanisms are explored and accordingly mathematical derivations for theoretical analysis are carried out. The issues of plastic stress wave, contact stress, shear perforation and energy dissipation are involved. Both the deformation of projectile and failure of target plate are addressed which include the upsetting deformation of projectile, pit-opening performance of target plate and perforation of target plate. This model presents the history of the deformation of projectile and target, velocity evolution, penetration resistance and shear perforation with timing. The modelling results show a high-precision prediction by comparing with experimental data of a flat-ended projectile penetrating Weldox 460E steel target plate [54] and other developed models of plugging failure model [13] and plastic wave model [48] for both cases of 16mm- and 20 mm-thickness target plates. This work offers the comprehensive calculation and analysis of penetration process and reveals the insights of the transient phenomena for impact engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.