Abstract

BackgroundThe genus Corynebacterium includes Gram-positive microorganisms of great biotechnologically importance, such as Corynebacterium glutamicum and Corynebacterium efficiens, as well as serious human pathogens, such as Corynebacterium diphtheriae and Corynebacterium jeikeium. Although genome sequences of the respective species have been determined recently, the knowledge about the repertoire of transcriptional regulators and the architecture of global regulatory networks is scarce. Here, we apply a combination of bioinformatic tools and a comparative genomic approach to identify and characterize a set of conserved DNA-binding transcriptional regulators in the four corynebacterial genomes.ResultsA collection of 127 DNA-binding transcriptional regulators was identified in the C. glutamicum ATCC 13032 genome, whereas 103 regulators were detected in C. efficiens YS-314, 63 in C. diphtheriae NCTC 13129 and 55 in C. jeikeium K411. According to amino acid sequence similarities and protein structure predictions, the DNA-binding transcriptional regulators were grouped into 25 regulatory protein families. The common set of DNA-binding transcriptional regulators present in the four corynebacterial genomes consists of 28 proteins that are apparently involved in the regulation of cell division and septation, SOS and stress response, carbohydrate metabolism and macroelement and metal homeostasis.ConclusionThis work describes characteristic features of a set of conserved DNA-binding transcriptional regulators present within the corynebacterial core genome. The knowledge on the physiological function of these proteins should not only contribute to our understanding of the regulation of gene expression but will also provide the basis for comprehensive modeling of transcriptional regulatory networks of these species.

Highlights

  • The genus Corynebacterium includes Gram-positive microorganisms of great biotechnologically importance, such as Corynebacterium glutamicum and Corynebacterium efficiens, as well as serious human pathogens, such as Corynebacterium diphtheriae and Corynebacterium jeikeium

  • Following three consecutive steps of data collection, a total number of 348 DNAbinding transcriptional regulators were identified in the genomes of C. glutamicum ATCC 13032, C. efficiens YS314, C. diphtheriae NCTC 13129 and C. jeikeium K411

  • Based on genome analyses with different bioinformatic tools we have defined the individual set of DNA-binding transcriptional regulators in four sequenced corynebacterial genomes and deduced thereof the common repertoire of transcriptional regulators of these species

Read more

Summary

Introduction

The genus Corynebacterium includes Gram-positive microorganisms of great biotechnologically importance, such as Corynebacterium glutamicum and Corynebacterium efficiens, as well as serious human pathogens, such as Corynebacterium diphtheriae and Corynebacterium jeikeium. A considerable amino acid sequence divergence has been observed among HTH proteins, they generally share a site-specific DNA-binding domain that is composed of two α-helices separated by a short turn of variable length [4]. Both α-helices are involved in the DNAbinding and recognition process in such a way that the first helix associates non- with the DNA molecule while the second helix recognizes and binds to its cognate operator sequence [5]. The putative physiological role of a DNA-binding transcription factor can be deduced from its classification into an evolutionary regulatory protein family, since within many families the members are homogenous in respect of their regulatory role and the physiology of the regulated genes [1]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call