Abstract

An important step towards understanding the mechanistic basis of the central dogma is the quantitative characterization of the dynamics of nucleic-acid-bound molecular motors in the context of the living cell. To capture these dynamics, we develop lag-time analysis, a method for measuring in vivo dynamics. Using this approach, we provide quantitative locus-specific measurements of fork velocity, in units of kilobases per second, as well as replisome pause durations, some with the precision of seconds. The measured fork velocity is observed to be both locus and time dependent, even in wild-type cells. In this work, we quantitatively characterize known phenomena, detect brief, locus-specific pauses at ribosomal DNA loci in wild-type cells, and observe temporal fork velocity oscillations in three highly-divergent bacterial species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.