Abstract

The in vivo dynamics of HIV infection, the infection mechanism, the cell types infected, and the role played by the cytotoxic cells are poorly understood. This paper uses mathematical modelling as a tool to investigate and analyze the immune system dynamics in the presence of HIV infection. We formulate a six-dimensional model of nonlinear ordinary differential equations derived from known biological interaction mechanisms between the immune cells and the HIV virions. The existence and uniqueness as well as positivity and boundedness of the solutions to the differential equations are proved. Furthermore, the disease-free reproduction number is derived and the local asymptotic stability of the model investigated. In addition, numerical analysis is carried out to illustrate the importance of having R0 < 1. Lastly, the biological dynamics of HIV in vivo infection are graphically represented. The results indicate that, at acute infection, the cytotoxic T-cells play a paramount role in reducing HIV viral replication. In addition, the results emphasize the importance of developing controls, interventions, and management policies that when implemented would lead to viral suppression during acute infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.