Abstract

The preparation of sequence and groove specific DNA methylating agents based on N-methylpyrrolecarboxamide subunits appended with an O-methyl sulfonate ester functionality (MeOSO2(CH2)2-Lex) has previously been described [Zhang, Y., Chen, F.-X., Mehta, P., and Gold, B. (1993) Biochemistry 32,7954-7965]. In contrast to simple methyl sulfonate esters, e.g., methyl methanesulfonate (MMS), which predominantly methylate at 7-guanine, MeOSO2-(CH2)2-Lex affords N3-methyladenine (3-MeAde) as its major adduct. Using competitive ELISA determinations, the methylation at major and minor groove sites in calf thymus DNA by MeOSO2(CH2)2-Lex has been precisely quantitated. The yields of N7-methylguanine (7-MeGua), 3-MeAde, and O6-methyldeoxyguanosine (6-Me-dGuo) are 0.424, 3.195, and 0.0027 mmol of adduct/mol of DNA, respectively, using 10 microM MeOSO2(CH2)2-Lex and 100 microM DNA. This compares to 0.773, 0.072, and 0.0033 mmol of adduct/mol of DNA for 7-MeGua, 3-MeAde, and 6-Me-dGuo, respectively, using MMS. The increase in the yield of 3-MeAde due to the minor groove equilibrium binding properties of MeOSO2(CH2)2-Lex is approximately 40-fold relative to MMS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.