Abstract

Nuclear magnetic resonance (NMR) measurement could provide information during the formation and dissociation of gas hydrate on the pore structure properties which are of great important to understand the gas production behavior. In this study, the in–situ NMR and other well logging data achieved during the natural gas hydrate drilling program were used to study the pore size and hydrate formation properties in the Shenhu area, South China Sea by comparing transverse magnetic relaxation time (T2) distributions between the gas hydrate zone and the upper water–saturated zone whose properties represent the virgin status. Compared with those of the upper water–saturated layer, increasing resistivity, higher–than–baseline shear modulus, less–than–density–porosity NMR porosity, shortening T2 peak time, reducing amplitude and covered area of T2 distributions and decreasing water–filling pore size denote the association of hydrate. Based on eight bin porosities distribution derived from user-defined time intervals of the T2 distribution for researching the hydrate formation characteristic in different pore size, macro–pores (T2 ≥ 10 ms, rc≥ 0.9 μm), meso–pores (3 ms ≤ T2 < 10 ms, 0.27 μm ≤rc<0.9μm) and micro–pores (T2 < 3 ms, rc< 0.27 μm) were divided. It was found that the meso–pores are the dominant pore size in the Shenhu area, but hydrate form more easily in the macro–pores. Just as the previous experience, gas hydrate forms primarily in macro–pores and meso–pores resulting in an increase of micro–pores. In addition, another mode was achieved that gas hydrate forms in the three types of pore spaces leading to a decrease of micro–pores. Both forming modes can develop reservoirs with high hydrate saturation that can exceed 30%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.