Abstract

A low power direct current atmospheric glow discharge sustained in the open to air atmosphere in contact with a small-sized flowing liquid cathode was used as an excitation source in optical emission spectrometry. The composition of electrolyte solutions served as the liquid cathode was modified by the addition of non-ionic surfactants, namely Triton x-45, Triton x-100, Triton x-405 and Triton x-705. The effect of the concentration of each surfactant was thoroughly studied on the emission characteristic of molecular bands identified in spectra, atomic emission lines of 16 metals studied and the background level. It was found that the presence of both heavy surfactants results in a significant increase in the net intensity of analytical lines of metals and a notable reduction of the intensity of bands of diatomic molecules and the background. In conditions considered to be a compromise for all metals, selected figures of merit for this excitation source combined with the optical emission spectrometry detection were determined. Limits of detection for all metals were within the range of 0.0003–0.05mgL−1, the precision was better than 6%, while calibration curves were linear over 2 orders of the magnitude of the concentration or more, e.g., for K, Li, Mg, Na and Rb. The discharge system with the liquid cathode modified by the addition of the surfactant found its application in the determination of Ca, Cu, Fe, K, Mg, Mn, Na and Zn in selected environmental samples, i.e., waters, soils and spruce needles, with the quite good precision and the accuracy comparable to that for measurements with flame atomic absorption spectrometry (FAAS) and flame atomic emission spectrometry (FAES).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call