Abstract

The goodness-of-fit analysis performed over the results provided by a model presented in a previous paper proved that the theoretical data were very well correlated with the experimental data with regard to the traction force (with Pearson coefficient r2 over 0.9); however, the model was less accurate in predicting traction efficiency, with r2 = 0.203. In order improve the model and obtain a better fit between the theoretical and experimental data (especially for the traction efficiency), the model was updated and modified by taking into account the geometry of the tire cross section, which was considered to be a deformable ellipse. Due to the deformable cross section, the minor axis of the tire–ground contact super ellipse decreased compared with the previous model (from 0.367 m to 0.222 m), while the major axis increased (from 0.530 m to 0.534 m). As a result, different data for the traction force and traction efficiency were obtained. The effect of the wheel travel reduction (wheel slip) over the tire–soil shear area was also investigated, and the hypothesis of a constant shear area (independent of wheel slip) provided the most accurate results. The goodness-of-fit analysis performed using the data predicted by the modified model showed that the Pearson coefficient increased significantly with regard to the traction efficiency (from 0.203 to 0.838), while it decreased by only 2.7% with regard to the data for the traction force, still preserving a high value (r2 = 0.896).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.