Abstract

Hybrid ultrasound imaging systems, which combine spherical focusing on transmit with axicon focusing on receive, provide excellent resolution over a useful depth of field. This paper presents a new hybrid design with improved sensitivity, in which the axicon focusing is achieved by two conical mirrors and a PZT 5A disk out into 8 sectors. We have investigated two methods of processing the signals from the 8 sectors. In the first, phase insensitive sector addition (PISA), the B-scan is formed from the sum of the 8 demodulated signals. In the second, multiplicative processing (MP), the 8 rf waveforms are multiplied and the resultant is demodulated to form the image. Both techniques result in smoothed speckle but degraded lateral resolution. As well, MP decreases the off-axis sensitivity of the system and artifacts characteristic of axicon focusing. Quantitative assessment of the effects of PISA and MP was performed using a new approach called contrast-to-speckle ratio (CSR). The CSR data, which is a measure of the image contrast of cylindrical voids in a random scattering medium relative to contrast fluctuations due to speckle, shows the superiority of PISA and MP. This conclusion is supported by images of in vitro human breast tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call