Abstract

In this paper, the improved split-step θ method, named the split-step composite θ method, is proposed to study the mean-square stability for stochastic differential equations with a fixed time delay. Under the global Lipschitz and linear growth conditions, it is proved that the split-step composite θ method with θ≥0.5 shows mean-square stability. An approach to improving numerical stability is illustrated by choices of parameters of this method. Some numerical examples are presented to show the accordance between the theoretical and numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.