Abstract

In this article, we investigate the strong convergence of the Euler–Maruyama method and stochastic theta method for stochastic differential delay equations with jumps. Under a global Lipschitz condition, we not only prove the strong convergence, but also obtain the rate of convergence. We show strong convergence under a local Lipschitz condition and a linear growth condition. Moreover, it is the first time that we obtain the rate of the strong convergence under a local Lipschitz condition and a linear growth condition, i.e., if the local Lipschitz constants for balls of radius R are supposed to grow not faster than log R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.