Abstract
Noncoding RNA refers to RNA that does not encode proteins. The lncRNA and miRNA it contains play crucial regulatory roles in organisms, and their aberrant expression is closely related to various diseases. Traditional experimental methods for validating the interactions of these RNAs have limitations, and existing prediction models exhibit relatively limited functionality, relying on isolated feature extraction and performing poorly in handling various types of small sample tasks. This paper proposes an improved de Bruijn graph that can inject RNA structural information into the graph while preserving sequence information. Furthermore, the improved de Bruijn graph enables graph neural networks to learn broader dependencies and correlations among data by introducing richer edge relationships. Meanwhile, the multitask learning model, DVMnet, proposed in this paper can handle multiple related tasks, and we optimize model parameters by integrating the total loss of three tasks. This enables multitask prediction of RNA interactions, disease associations, and subcellular localization. Compared with the best existing models in this field, DVMnet has achieved the best performance with a 3% improvement in the area under the curve value and demonstrates robust results in predicting diseases and subcellular localization. The improved de Bruijn graph is also applicable to various scenarios and can unify the sequence and structural information of various nucleic acids into a single graph.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have