Abstract

Transposable elements (TEs) are responsible for significant genomic variation in plants. Our understanding of the evolutionary forces shaping TE polymorphism has lagged behind other mutations because of the difficulty of accurately identifying TE polymorphism in short-read population genomic data. However, new approaches allow us to quantify TE polymorphisms in population datasets and address fundamental questions about the evolution of these polymorphisms. Here, we discuss how insertional biases shape where, when, and how often TEs insert throughout the genome. Next, we examine mechanisms by which TEs can affect phenotype. Finally, we evaluate current evidence for selection on TE polymorphisms. All together, it is clear that TEs are important, but underappreciated, contributors to intraspecific phenotypic variation, and that understanding the dynamics governing TE polymorphism is crucial for evolutionary biologists interested in the maintenance of variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.