Abstract
Molecular Radiation Therapy (MRT) is a valid therapeutic option for a wide range of malignancies, such as neuroendocrine tumors and liver cancers. In its practice, it is generally acknowledged that there is a need to evaluate the influence of different factors affecting the accuracy of dose estimates and to define the actions necessary to maintain treatment uncertainties at acceptable levels. The present study addresses the problem of uncertainty propagation in 90Y-PET quantification. We assessed the quantitative accuracy in reference conditions of three PET scanners (namely, Siemens Biograph mCT, Siemens Biograph mCT flow, and GE Discovery DST) available at three different Italian Nuclear Medicine centers. Specific aspects of uncertainty within the quantification chain have been addressed, including the uncertainty in the calibration procedure. A framework based on the Guide to the Expression of Uncertainty in Measurement (GUM) approach is proposed for modeling the uncertainty in the quantification processes, and ultimately, an estimation of the uncertainty achievable in clinical conditions is reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.