Abstract
The mechanism of vibrational relaxation and dissociation in the O2-O system at elevated temperatures is investigated by means of molecular dynamics. The most recent O3 potential energy surfaces (PESs), obtained from the first principles quantum mechanical calculations [Varga et al., J. Chem. Phys. 147, 154312 (2017)], are used to derive a complete set of state-specific rate coefficients of vibrational energy transfer and dissociation. Unlike most of the previous efforts that utilize only the lowest and supposedly most reactive 11A' O3 PES [A. Varandas and A. Pais, Mol. Phys. 65, 843 (1988)], this paper demonstrates the necessity to account for a complete ensemble of all excited O3 PESs that correlate with O2(X) and O(3P) when high-temperature kinetics is of interest. At the same time, it is found that the Varandas 11A' O3 PES adequately describes vibrational energy transfer and dissociating dynamics when compared to the most recent 11A' O3 PES by Varga et al. [J. Chem Phys. 147, 154312 (2017)]. The differences between this new dataset and previous rate coefficients are quantified by the master equation model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.