Abstract
Energy level alignment and electronic structure at organic semiconductor interfaces must be controlled to ensure efficient carrier harvesting or injection in next-generation organic optoelectronic technologies. In this context, hybrid organic/inorganic semiconductor interfaces exhibit particularly rich physics. Here, we show that states in the band gap of the inorganic layered van der Waals dichalcogenide SnS2 play an important role in determining energy level alignment at the hybrid interface with copper phthalocyanine (CuPc). By taking advantage of the closely related CuPc film growth on SnS2 and the well-studied interface of CuPc/HOPG, we are able to trace spectroscopic differences to the fundamentally different electronic interactions across the two interfaces. We provide a detailed picture of the role of gap states at the hybrid interface and shed light on the electronic properties of inorganic semiconductors in general and metal dichalcogenides in particular.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electron Spectroscopy and Related Phenomena
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.