Abstract
The effects of different treatments for the exchange-correlation energy on the accuracy of non-self-consistent frozen density approximation (FDA) are discussed. Local spin density approximation (LSDA) and non-local spin density approximation (NLSDA) are employed, respectively. Corresponding results obtained by using full-self-consistent density functional theory (DFT) are also given for the purpose of comparison. Explicit calculations for hydrogen bonds, covalent bonds and ionic bonds indicate that, comparing with LSDA, NLSDA can improve the accuracy of FDA as well as that of DFT. This improvement attributed to the refinements in the treatment for the electronic exchange-correlation energy may help to extend the application of FDA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.