Abstract

The electronic structure and magnetic properties of a single Fe adatom on a CuN surface have been studied using density functional theory in the local spin density approximation (LSDA), the LSDA+U approach, and the local density approximation plus dynamical mean-field theory (LDA+DMFT). The impurity problem in LDA+DMFT is solved through exact diagonalization and in the Hubbard-I approximation. The comparison of the one-particle spectral functions obtained from LSDA, LSDA+U, and LDA+DMFT show the importance of dynamical correlations for the electronic structure of this system. Most importantly, we focused on the magnetic anisotropy and found that neither LSDA nor LSDA+U can explain the measured high values of the axial and transverse anisotropy parameters. Instead, the spin excitation energies obtained from our LDA+DMFT approach with exact diagonalization agree significantly better with experimental data. This affirms the importance of treating fluctuating magnetic moments through a realistic many-body treatment when describing this class of nanomagnetic systems. Moreover, it facilitates insight to the role of the hybridization with surrounding orbitals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.