Abstract

Abstract Autistic disorders are a set of complex syndromes that lead to challenges impacting communication, behavior repertoire, and social skills. The etiology of autism is unknown but is likely epigenetic in nature. It is likely associated with an inflammatory process leading to neuroinflammation in early childhood. Autistic disorders include seizures in approximately one-third of the cases and there are often regions of brain dysfunction associated with neural connectivity anomalies. The electroencephalogram (EEG) is presented as a premiere tool to assess these difficulties due to its' non-invasive nature, availability and utility in detailing these difficulties. Techniques for seizure detection, monitoring, and tracing their propagation are shown. Similar approaches can then be utilized for assessing EEG oscillations, which are at the heart of these neuronal regulation dysfunctions. Autistic disorders are clearly associated with regions of dysfunction and quantitative electroencephalogram strategies for assessing these impairments are shown. These include techniques for increasing the specificity and spatial resolution of the EEG such as source localization and independent components analysis. Lastly, advanced methods for assessing the neural connectivity problems that underlie the difficulties of these children are presented. EEG assessment, when processed and analyzed with the most advanced techniques, can be invaluable in the evaluation of autistic disorders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.