Abstract

Phosphatidylcholine (PC) is a major class of phospholipids that are essential for post-embryonic growth in plants. In Arabidopsis, three copies of the phospho-base N-methyltransferase, PMT1, PMT2, and PMT3, are known to account for PC biosynthesis because the triple-knockout mutant is devoid of biosynthesis and shows lethality in post-embryonic but not embryonic growth. Arabidopsis also contains a distinct phospholipid N-methyltransferase (PLMT) that is homologous with yeast and animal PLMT that methylates phospholipids to produce PC. However, the knockout mutant of PLMT does not show morphological phenotypes or decreased PC content, so the role of PLMT remains unclear. Here, we show that PLMT is ubiquitously expressed in different organs and localized at the endoplasmic reticulum, where PC is produced. Overexpression of PLMT in planta increased the content of phospholipids including PC and affected vegetative but not reproductive growth. Although silique lengths were shorter, pollen remained viable and mature seeds were produced. Intriguingly, seed triacylglycerol content was increased with altered fatty acid composition. We conclude that PLMT might be a functional enzyme in PC biosynthesis and play an organ-specific role in developing seeds, where rapid accumulation of triacylglycerol dominates the entire glycerolipid metabolic flux.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call