Abstract

In fungal microorganisms including fission yeast, Schizosaccharomyces pombe and baker's yeast, Saccharomyces cerevisiae, two enzymes are required to catalyze the synthesis of phosphatidylcholine (PC) from phosphatidylethanolamine (PE). The genes encoding the class I and class II phospholipid N-methyltransferases (PLMTs) have been cloned from both yeasts. The class II PLMTs catalyze the first methylation step from PE to phosphatidyl-monomethylethanolamine (PMME). Representatives of the class II type enzymes have been isolated only from yeast and the amino acid sequence of these enzymes contain regions of internal duplication. The class I PLMTs catalyze the last two methylation steps from PMME to PC. The class I PLMTs from both yeasts are homologous to the products of the phosphatidylethanolamine methyltransferase (PEMT) genes isolated from mouse and rat (described in the article by Vance et al. in this volume). Like the mammalian PEMT gene products, the S. cerevisiae class I enzyme can catalyze all three methylation steps to PC biosynthesis. S. cerevisiae strains, in which either the class II or class I enzyme is deleted, grow slowly in the absence of choline and exhibit low levels of PC. However, in S. pombe, mutants lacking either one of the two PLMTs are choline auxotrophs. Thus, both enzymes are required in S. pombe for maximal growth in the absence of exogenous choline. The S. cerevisiae methyltransferase genes are regulated at the level of transcription in response to the soluble precursors, inositol and choline as well as to growth phase. The mechanism of regulation of the S. pombe methyltransferases is not yet understood but appears to occur post-transcriptionally in response to choline availability. In addition, the S. pombe PLMT genes are regulated transcriptionally in response to growth phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call