Abstract

Modeling of subcutaneous injections in soft adipose tissue – a common way to administer pharmaceutical medication – is a challenging multiphysics problem which has recently attracted the attention of the engineering community, as it could help optimize medical devices and treatments. The underlying continuum mechanics of this process is complex and involves finite strain poro-mechanics – where a viscous fluid, containing different charged species, is injected into a porous viscoelastic matrix and absorbed by blood and lymph vessels – as well as electrochemistry, that generates osmotic pressure due to electrical charges attached to the tissue. In this paper, we present a chemo-mechanical model of subcutaneous injections that accounts for the diffusion of electrically charged chemical species – contained in the interstitial fluid – into the tissue, blood and lymph vessels. This work provides the methodology to derive a general theory accounting for the electro-chemo-poro-mechanical couplings in a thermodynamically consistent framework, avoiding phenomenological biases or inconsistencies likely to arise in the derivation of nonlinear theories with many couplings. To motivate its use for the modeling of subcutaneous injections, it is complemented by a simplified, linearized boundary value problem that illustrates the importance of considering these couplings for the prediction of subcutaneous injections key performance indicators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.