Abstract

Di-(2-ethylhexyl) phthalate (DEHP) and its main metabolite, monoethylhexyl phthalic acid (MEHP), are a serious threat to human and animals’ health in the current century. However, their exact mechanism to induce nephrotoxicity is not clear. In the current study, we addressed toxic effects of MEHP and DEHP on embryonic human kidney cells (HEK-293 cell line) and kidney tissue of rats, respectively. In the HEK-293, MTT assay and oxidative stress parameters were measured after treatment with different concentrations of MEHP. For in vivo study, rats were treated with different doses of DEHP (50, 100, 200, 400 mg/kg) via gavage administration for 45 days. The renal function biomarkers (BUN and creatinine) were determined in serum of rats. Mitochondrial toxic parameters including MTT, mitochondrial membrane potential (MMP), mitochondrial swelling, and also oxidative stress parameters were measured in isolated kidney mitochondria. Histopathological effects of DEHP were also evaluated in rats’ kidneys. We demonstrated that MEHP induced oxidative stress and cytotoxicity in HEK-293 cells in a concentration dependent manner. The administration of DEHP led to histopathological changes in kidney tissue, which concurred with BUN and creatinine alternations in serum of rats. The results of present study showed a significant mitochondrial dysfunction and oxidative stress confirmed by enhancement of mitochondrial swelling, mitochondrial reactive oxygen species (ROS) and malondialdehyde (MDA), and reduction of MMP and mitochondrial glutathione (GSH). Taken together, this study showed that DEHP/MEHP resulted in mitochondrial dysfunction and oxidative damage, which suggest a vital role of mitochondria in DEHP/MEHP-induced nephrotoxicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.