Abstract

The Three Gorges Reservoir Region (TGRR) in China is an ecologically and politically important region experiencing rapid land use/cover changes and prone to many environment hazards related to soil erosion. In the present study, we: (1) estimated recent changes in the risk pattern of soil erosion in the TGRR, (2) analysed how the changes in soil erosion risks could be associated with land use and land cover change, and (3) examined whether the interactions between urbanisation and natural resource management practices may exert impacts on the risks. Our results indicated a declining trend of soil erosion risk from 14.7 × 106 t in 2000 to 1.10 × 106 t in 2015, with the most risky areas being in the central and north TGRR. Increase in the water surface of the Yangtze River (by 61.8%, as a consequence of water level rise following the construction of the Three Gorges Dam), was found to be negatively associated with soil erosion risk. Afforestation (with measured increase in forest extent by 690 km2 and improvement of NDVI by 8.2%) in the TGRR was associated with positive soil erosion risk mitigation. An interaction between urbanisation (urban extant increased by 300 km2) and vegetation diversification (decreased by 0.01) was identified, through which the effect of vegetation diversification on soil erosion risk was negative in areas having lower urbanisation rates only. Our results highlight the importance of prioritising cross-sectoral policies on soil conservation to balance the trade-offs between urbanisation and natural resource management.

Highlights

  • Soil erosion by water is one of the most sensitive factors shaping the pattern of land degradation [1].Soil erosion can lead to reduced agricultural productivity, intensified the occurrence of flooding and ecological disasters [2], result in sediment accumulation in riverway [3] and cause water environment deterioration [4]

  • The present study provides a large-scale assessment on the spatio-temporal changes in soil risk in the Three Gorges Reservoir Region (TGRR) which has experienced rapid and complex land erosion risk in the Three Gorges Reservoir Region (TGRR) which has experienced rapid and complex use/cover change driven by multi-sectoral policies, e.g., to accommodate population migrated due the land use/cover change driven by multi-sectoral policies, e.g., to accommodate population migrated

  • The decrease in the averaged soil erosion risk was found to be almost 90 percent by 2015. Such a sharp decrease was mainly driven by the C factor which decreased significantly as a consequence of improved NDVI, and which overran the effects of the increased R and P factors

Read more

Summary

Introduction

Soil erosion by water is one of the most sensitive factors shaping the pattern of land degradation [1]. Soil erosion can lead to reduced agricultural productivity, intensified the occurrence of flooding and ecological disasters [2], result in sediment accumulation in riverway [3] and cause water environment deterioration [4]. It is important to quantify the impacts of soil erosion by water in order to develop effective actions for soil and water conservation. The underlying processes of soil erosion can be triggered by both natural and anthropogenic factors. Soil texture, terrain slope, and vegetation coverage [5]. Anthropogenic drivers induced by human include urbanisation, cultivation and land management

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.