Abstract

Several works put emphasis on the maturation of floating tidal stream turbine systems, deemed viable for sites at deep water depths. The objective of this research is to determine, through a CFD model, the yaw effect on the wake and functioning of a floating twin-turbine system under wave-induced motion. The simulation certainty is corroborated against experiments on a 1:7 piled twin-turbine system (Froude similarity). Collectively, the variation and deficiency of the power and thrust coefficients are amplified with the yaw frequency and amplitude. Whereas the individual wakes collide, depending on the yaw feature and turbine cross-current spacing, resembling a smoke-plume-type pattern. The larger cross-current spacing shortens the wakes and reduces near-wake deficit at mid-row due to the greater energy exchange from the ambient flow. Regardless of the yaw feature, the transversal wake deficits turn from double (majority symmetrical) at near wake into triple distributions thenceforth, before flattening at far wake. Importantly, the wake unsteadiness and recovery rate are more obvious with period, as opposed to amplitude effect. As yaw operation is imminent, contributed by flow skewness and platform yaw motion, it will be constructive to implement natural frequency analysis to prevent vortex-induced vibrations and mechanical weariness in the floating system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.